

NGRA of developmental neurotoxicity liabilities of neonicotinoids insecticides

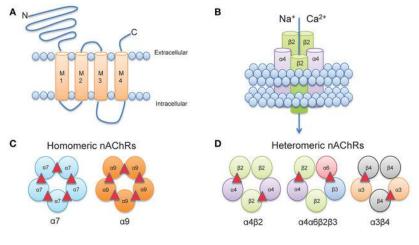
Susanne Hougaard Bennekou EU-ToxRisk Final symposium 4th. November 2021

Neonicotinoid pesticides

Designed to target insect nicotine acethylcholine receptors (nAChR). Less affinity to mammalian nAChRs

Use in EU declining due to conecern for pollinators

Systemic uptake by plants – found as residue in food


Home / Newsroom / Neonicounoids, risks to bees confirmed

Neonicotinoids: risks to bees confirmed

Published: 28 February 2018

Most uses of neonicotinoid pesticides represent a risk to wild bees and honeybees, according to assessments published today by EFSA. The Authority has updated its risk assessments of three neonicotinoids – clothianidin, imidacloprid and thiamethoxam – that are currently subject to <u>restrictions</u> in the EU because of the threat the pose to bees.

Hendrikson et al 2013

Regulatory concern?

Nicotine-Like Effects of the Neonicotinoid Insecticides Acetamiprid and Imidacloprid on Cerebellar Neurons from Neonatal Rats

Junko Kimura-Kuroda*, Yukari Komuta, Yoichiro Kuroda, Masaharu Hayashi, Hitoshi Kawano

Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya-city, Tokyo, Japan

Acetamiprid & imidaclorprid similar to nicotine - exert excitatory effects on nAChRs of rat neo-natal cerebellar granular cells in culture at low concentrations (from 1μ M). ->May adversely affect the developing human brain

EFSA Journal 2013;11(12):3471

SCIENTIFIC OPINION

Scientific Opinion on the developmental neurotoxicity potential of acetamiprid and imidacloprid¹

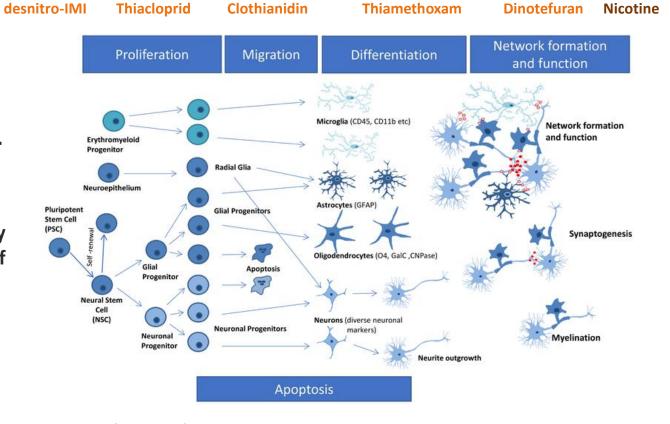
EFSA 2013

Regulatory developmental neurotoxicity (DNT)studies (TG426):

Imidacloprid: Effectson offspring, however the data was not be sufficient for a robust characterisation of dose-response. There were neuropathological finding at the top-dose.

Acetamiprid: Motor activity and learning & memory could not be adequately assessed. The study can only provide supportive evidence, but is inadequate for a robust characterisation of effects and dose-response.

Consequence: Both studies had limitations -> Reference values were revised


Case study: Neonicotinoid pesticides

Fundamental neurodevelopmental processes relevant for DNT

Imidacloprid

Acetamiprid

It is assumed that DNT toxicants exert their toxicity by disturbing at least one of these processes

Bal-Price et al. ALTEX 2018

Case study: Neonicotinoid pesticides

Acetamiprid Imidacloprid -> desnitro-IMI Thiacloprid Clothianidin Thiamethoxam Dinotefuran Nicotine

	Key neurodevelopmental processes and cell survival					
Test Method	UKN2	UKN4	UKN5	RoFA		
Test System	neural crest cells	LUHMES (CNS neurons)	hiPSC neurons (PNS neurons)	hiPSC differentiation into neuronal	TD42 iPSCs	SHSY5Y cells
Endpoint 1	cytotoxicity	cytotoxicity	cytotoxicity	cytotoxicity	cytotoxicity	cytotoxicity
Endpoint 2	migration	neurite outgrowth	neurite outgrowth	rosette formation	-	-
	Biochemical/Signalling				In silico	
	Bioch	emical/Sign	alling	Zebrafish	In s	ilico
Test Method			alling	Zebrafish FET (OECD 236)	In s	ilico PBTK/QIVIVE
Test Method Test System						
	CALUX assays reporter gene	Calcium me	asurements	FET (OECD 236)	Docking IFD; Schrödinger	PBTK/QIVIVE

Case study: Neonicotinoid pesticides

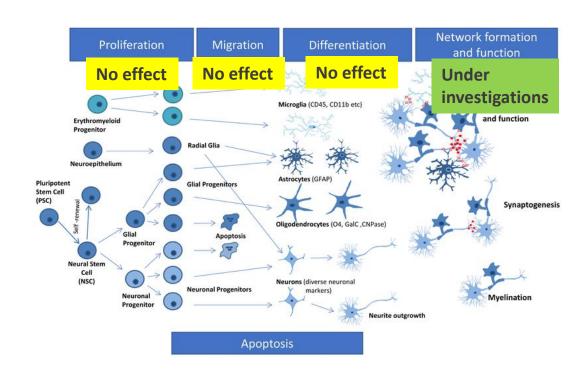
Acetamiprid

Imidacloprid

> desnitro-IMI

Thiacloprid

Clothianidin

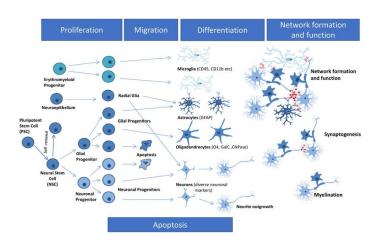

Thiamethoxam

Dinotefuran Nic

Nicotine

- Neuronal signaling is altered by the neonicotinoids in a similar manner to nicotine
- Interactions with human receptors

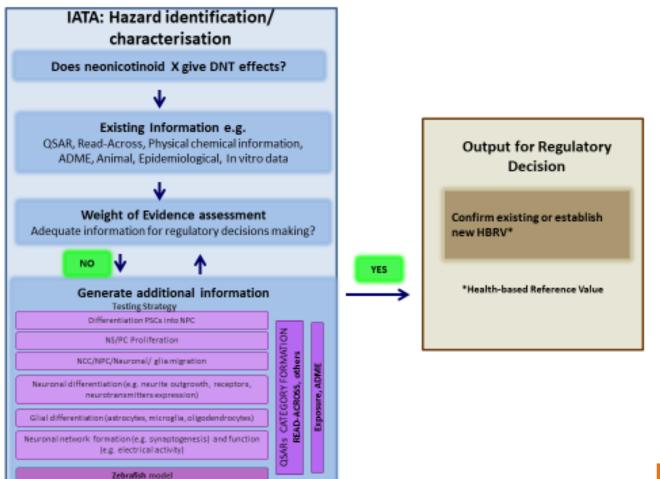
Nicotine	Active	
Desnitro- Imidacloprid	Active	
Imidacloprid	Active	
Acetamiprid	Active	
Thiacloprid	Active	
Clothianidin	Active	
Thiamethoxam	Inactive	
Dinetefuran	Inactive	

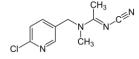

Loser et al. 2021a. Arch. Tox. doi.org/10.1007/s00204-021-03031-1 Loser et al. 2021b. Arch. Tox. doi.org/10.1007/s00204-021-03168-z

Regulatory impact?

OECD Test guideline program: The DNT project

- Develop a guidance on application and interpretation of in vitro DNT assays
- Provide a flexible and tailored DNT testing battery to address different regulatory needs, identify the current suitability of different assays and provide elements for an Integrated approach to testing and assessment (IATA) of DNT modalities not related to the endocrine system
- Applicable to all chemicals

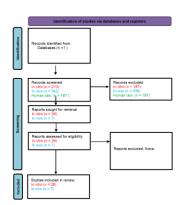



Regulatory Impact: Case Studies for OECD IATA project

Problem formulation: Can new approach methods data in an IATA context (integrating existing information) on a neonicotinoid, sufficiently characterize DNT hazard?

IATA case studies

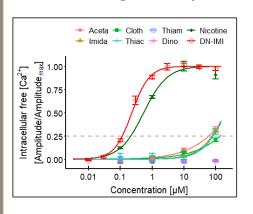
Acetamiprid


HN NO₂ NH NH NH CI

Imidacloprid -> desnitro-IMI

Nicotine

Literature review



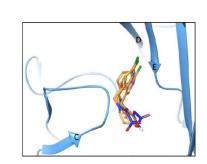
How it's

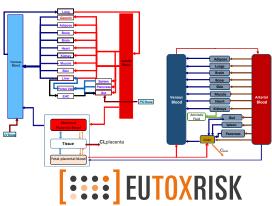
SCIENTIFIC REPORT

APPROVED: 25 February 2021 doi: 10.2903/j.efsa.2021.6491

In vitro testing - battery

AOP nAChR activation Binding to nAChR Altered neuro-Delayed mental Altered gene development development ADS Inhibited nAChR activation Schizophrenia Epilepsy •Docking α4β2nAChR •TempOSeq analysis Proliferation Activation of Ca²⁺ of transcription; Differentiation DEGs and pathway Docking α7nAChR Neurite outgrowth analyses Migration Cytotoxicity •Inhibition of •ZFT agonist induced • ZFE Coiling Ca²⁺influx • ZFE swimming


Human exposure


The 2019 European Union report on pesticide residues in food

European Food Safety Authority (EFSA), Luis Carrasco Cabrera and Paula Medina Pastor

In silico – receptor docking

IVIVE-PBK

Case study

IATA Case Study on the use of Integrated Approaches for Testing and Assessment for developmental neurotoxicity hazard characterisation of imidacloprid and the metabolite desnitro-imidacloprid

Jonathan Blum, Ylva Johansson, Rebecca von Hellfeld, Thomas Braunbeck, Maria Johansson, Rebecca von Hellfeld, Rebecca vo

IATA Case Study on the use of Integrated Approaches for Testing and Assessment for developmental neurotoxicity hazard characterisation of acetamiprid

Ylva Johansson, Jonathan Blum, Rebecca von Hellfeld, Thomas Braunbeck, María Hinojosa, Melinda Zana, Andras Dinnyes, Dominik Loser, Marcel Leist, Karin Grillberger, Gerhard Ecker, Barbara M.A. van Vugt-Lussenburg, Bart van der Burg, Iain Gardner, Anna Forsby, Susanne Hougaard Bennekou

Universität Konstanz

Stockholms universitet

Thank you

