Refining Drug-Induced Cholestasis Prediction: An Explainable Consensus Model Integrating Chemical and Biological Fingerprints

Journal of Chemical Information and Modeling
2025
Helmke Palle
Ecker, Gerhard F.
https://pubs.acs.org/doi/full/10.1021/acs.jcim.4c02363
DOI: https://doi.org/10.1021/acs.jcim.4c02363
PMID:
Keyword:

Abstract

Effective drug safety assessment, guided by the 3R principle (Replacement, Reduction, Refinement) to minimize animal testing, is critical in early drug development. Drug-induced liver injury (DILI), particularly drug-induced cholestasis (DIC), remains a major challenge. This study introduces a computational method for predicting DIC by integrating PubChem substructure fingerprints with biological data from liver-expressed targets and pathways, alongside nine hepatic transporter inhibition models. To address class imbalance in the public cholestasis data set, we employed undersampling, a technique that constructs a small and robust consensus model by evaluating distinct subsets. The most effective baseline model, which combined PubChem substructure fingerprints, pathway data and hepatic transporter inhibition predictions, achieved a Matthews correlation coefficient (MCC) of 0.29 and a sensitivity of 0.79, as validated through 10-fold cross-validation. Subsequently, target prediction using four publicly available tools was employed to enrich the sparse compound-target interaction matrix. Although this approach showed lower sensitivity compared to experimentally derived targets and pathways, it highlighted the value of incorporating specific systems biology related information. Feature importance analysis identified albumin as a potential target linked to cholestasis within our predictive model, suggesting a connection worth further investigation. By employing an expanded consensus model and applying probability range filtering, the refined method achieved an MCC of 0.38 and a sensitivity of 0.80, thereby enhancing decision-making confidence. This approach advances DIC prediction by integrating biological and chemical descriptors, offering a reliable and explainable model.