Inhibition of Neural Crest Cell Migration by Strobilurin Fungicides and Other Mitochondrial Toxicants

Abstract

Cell-based test methods with a phenotypic readout are frequently used for toxicity screening. However, guidance on how to validate the hits and how to integrate this information with other data for purposes of risk assessment is missing. We present here such a procedure and exemplify it with a case study on neural crest cell (NCC)-based developmental toxicity of picoxystrobin. A library of potential environmental toxicants was screened in the UKN2 assay, which simultaneously measures migration and cytotoxicity in NCC. Several strobilurin fungicides, known as inhibitors of the mitochondrial respiratory chain complex III, emerged as specific hits. From these, picoxystrobin was chosen to exemplify a roadmap leading from cell-based testing towards toxicological predictions. Following a stringent confirmatory testing, an adverse outcome pathway was developed to provide a testable toxicity hypothesis. Mechanistic studies showed that the oxygen consumption rate was inhibited at sub-µM picoxystrobin concentrations after a 24 h pre-exposure. Migration was inhibited in the 100 nM range, under assay conditions forcing cells to rely on mitochondria. Biokinetic modeling was used to predict intracellular concentrations. Assuming an oral intake of picoxystrobin, consistent with the acceptable daily intake level, physiologically based kinetic modeling suggested that brain concentrations of 0.1–1 µM may be reached. Using this broad array of hazard and toxicokinetics data, we calculated a margin of exposure ≥ 80 between the lowest in vitro point of departure and the highest predicted tissue concentration. Thus, our study exemplifies a hit follow-up strategy and contributes to paving the way to next-generation risk assessment.

Transcriptomic changes and mitochondrial toxicity in response to acute and repeat dose treatment with brequinar in human liver and kidney in vitro models

Abstract

The potent dihydroorotate dehydrogenase (DHODH) inhibitor brequinar has been investigated as an anticancer, immunosuppressive, and antiviral pharmaceutical agent. However, its toxicity is still poorly understood. We investigated the cellular responses of primary human hepatocytes (PHH) and telomerase-immortalised human renal proximal tubular epithelial cells (RPTEC/TERT1) after a single 24-h exposure up to 100 μM brequinar. Additionally, RPTEC/TERT1 cells underwent repeated daily exposure for five consecutive days at 0.3, 3, and 20 μM. Transcriptomic analysis revealed that PHH were less sensitive to brequinar treatment than RPTEC/TERT1 cells. Upregulation of various phase I and II drug-metabolising enzymes, particularly Cytochrome P450 (CYP) 1 A and 3 A enzymes, in PHH suggests potential detoxification. Furthermore, brequinar exposure led to a significant upregulation of several stress response pathways in PHH and RPTEC/TERT1 cells, including the unfolded protein response, Nrf2, p53, and inflammatory responses. RPTEC/TERT1 cells exhibited greater sensitivity to brequinar at 0.3 μM with repeated exposure compared to a single exposure. Furthermore, brequinar could impair the mitochondrial respiration of RPTEC/TERT1 cells after 24 h. This study provides new insights into the differential responses of PHH and RPTEC/TERT1 cells in response to brequinar exposure and highlights the biological relevance of implementing repeated dosing regimens in in vitro studies.

Chemical and Biological Mechanisms Relevant to the Rescue of MG-132-Treated Neurons by Cysteine

Abstract

Proteasome dysfunctions are observed in many human pathologies. To study their role and potential treatment strategies, models of proteasome inhibition are widely used in biomedical research. One frequently used tool is the proteasome inhibitor MG-132. It triggers the degeneration of human neurons, and several studies show protection from pathological events by glutathione or its precursors. It has therefore been concluded that glutathione protects cells from proteasome dysfunction. However, an alternative explanation is that MG-132, which is a peptide aldehyde, is chemically inactivated by thiols, and the apparent protection by glutathione from proteasome dysfunction is an artefact. To clarify this issue, we examined the chemical inactivation of MG-132 by thiols and the role of such reactions for neuroprotection. Using mass spectrometry and nuclear magnetic resonance spectroscopy, we found that MG-132 reacted with L-cysteine to form a stable end product and with glutathione to form an unstable intermediate. Using a cell-free proteasome inhibition assay, we found that high concentrations of L-cysteine can scavenge a substantial fraction of MG-132 and thus reduce proteasome inhibition. Glutathione (or N-acetyl-cysteine) did not alter proteasome inhibition (even at high concentrations). In a final step, we studied human neuronal cultures. We exposed them to MG-132, supplemented the culture medium with various thiols, and assessed intracellular L-cysteine concentrations. The transcriptome response pattern also indicated an inhibition of the proteasome by MG-132 in the presence of L-cysteine. We conclude that thiol concentrations that can be reached in cells do not inactivate MG-132 in pathological models. They rather act in a cytoprotective way as antioxidants.

Mapping out strategies to further develop human-relevant, new approach methodology (NAM)-based developmental neurotoxicity (DNT) testing

Abstract

On occasion of the DNT5 meeting in Konstanz, Germany (April-2024), participants brainstormed on future challenges concerning a regulatory implementation of the developmental neurotoxicity (DNT) in vitro test battery (DNT-IVB). The five discussion topics below outline some of the key issues, opportunities and research directions for the next several years: (1) How to contextualize DNT hazard with information on potential maternal toxicity or other toxicity domains (non-DNT)? Several approaches on how to use cytotoxicity data from NAMs were discussed. (2) What opportunities exist for an immediate or near-future application of the DNT-IVB, e.g. as a prioritisation step or add-on to other information? Initial examples are already emerging; the data can be used even if the battery is not converted to a defined approach. (3) How to establish data interpretation procedures for multi-dimensional endpoints that reduce dimensionality and are suitable for classification? A decision framework  is required on how to use the DNT-IVB in a regulatory context. Machine-learning (AI-approaches) may provide novel classification models. (4) How can a battery of molecular initiating events (MIEs) be smartly linked to the DNT-IVB? At what tier of an overall strategy would MIEs be evaluated, and how would one optimally balance cost vs information yield. (5) What is the way forward to scientific validation of DNT NAMs and the DNT-IVB? A large set of animal data would be required for conventional approaches, while mechanistic information may establish relevance in other ways.

Biology-inspired dynamic microphysiological system approaches to revolutionize basic research, healthcare and animal welfare

Abstract

The regular t4 workshops on biology-inspired microphysiological systems (MPS) have become a reliable benchmark for assessing fundamental scientific, industrial, and regulatory trends in the MPS field. The 2023 workshop participants concluded that MPS technology as used in academia has matured significantly, as evidenced by the steadily increasing number of high-quality research publications, but that broad industrial adoption of MPS has been slow. Academic research using MPS is primarily aimed at accurately recapitulating human biology in MPS-based organ models to enable breakthrough discoveries. Examples of these developments are summarized in the report. In addition, we focus on key challenges identified during the previous workshop. Bridging gaps between academia, regulators, and industry is addressed. We also comment on overcoming barriers to trust and acceptance of MPS-derived data – the latter being particularly important in a regulatory environment. The status of implementation of the recommendations detailed in the 2020 report has been reviewed. It was concluded that communication between stakeholders has improved significantly, while the recommendations related to regulatory acceptance still need to be implemented. Participants noted that the remaining challenges for increased translation of these technologies into industrial use and regulatory decision-making will require further efforts on well-defined context of use qualifications, together with increased standardization. This will make MPS data more reliable and ultimately make these novel tools more economically sustainable. The long-term roadmap from the 2015 workshop was critically reviewed and updated. Recommendations for the next period and an outlook conclude the report.

Assessment of pulmonary fibrosis using weighted gene co-expression network analysis

Abstract

For many industrial chemicals toxicological data is sparse regarding several regulatory endpoints, so there is a high and often unmet demand for NAMs that allow for screening and prioritization of these chemicals. In this proof of concept case study we propose multi-gene biomarkers of compounds’ ability to induce lung fibrosis and demonstrate their application in vitro. For deriving these biomarkers we used weighted gene co-expression network analysis to reanalyze a study where the time-dependent pulmonary gene-expression in mice treated with bleomycin had been documented. We identified eight modules of 58 to 273 genes each which were particularly activated during the different phases (inflammatory; acute and late fibrotic) of the developing fibrosis. The modules’ relation to lung fibrosis was substantiated by comparison to known markers of lung fibrosis from DisGenet. Finally, we show the modules’ application as biomarkers of chemical inducers of lung fibrosis based on an in vitro study of four diketones. Clear differences could be found between the lung fibrosis inducing diketones and other compounds with regard to their tendency to induce dose-dependent increases of module activation as determined using a previously proposed differential activation score and the fraction of differentially expressed genes in the modules. Accordingly, this study highlights the potential use of composite biomarkers mechanistic screening for compound-induced lung fibrosis.