A framework for chemical safety assessment incorporating new approach methodologies within REACH

Abstract

The long-term investment in new approach methodologies (NAMs) within the EU and other parts of the world is beginning to result in an emerging consensus of how to use information from in silico, in vitro and targeted in vivo sources to assess the safety of chemicals. However, this methodology is being adopted very slowly for regulatory purposes. Here, we have developed a framework incorporating in silico, in vitro and in vivo methods designed to meet the requirements of REACH in which both hazard and exposure can be assessed using a tiered approach. The outputs from each tier are classification categories, safe doses, and risk assessments, and progress through the tiers depends on the output from previous tiers. We have exemplified the use of the framework with three examples. The outputs were the same or more conservative than parallel assessments based on conventional studies. The framework allows a transparent and phased introduction of NAMs in chemical safety assessment and enables science-based safety decisions which provide the same level of public health protection using fewer animals, taking less time, and using less financial and expert resource. Furthermore, it would also allow new methods to be incorporated as they develop through continuous selective evolution rather than periodic revolution.

Circulating (Poly)phenol Metabolites: Neuroprotection in a 3D Cell Model of Parkinson’s Disease

Abstract

Scope: Diets rich in (poly)phenols have been associated with positive effects on neurodegenerative disorders, such as Parkinson’s disease (PD). Several low-molecular weight (poly)phenol metabolites (LMWPM) are found in the plasma after consumption of (poly)phenol-rich food. It is expected that LMWPM, upon reaching the brain, may have beneficial effects against both oxidative stress and neuroinflammation, and possibly attenuate cell death mechanisms relate to the loss of dopaminergic neurons in PD.

Methods and results: This study investigates the neuroprotective potential of two blood-brain barrier permeant LMWPM, catechol-O-sulfate (cat-sulf), and pyrogallol-O-sulfate (pyr-sulf), in a human 3D cell model of PD. Neurospheroids were generated from LUHMES neuronal precursor cells and challenged by 1-methyl-4-phenylpyridinium (MPP+ ) to induce neuronal stress. LMWPM pretreatments were differently neuroprotective towards MPP+ insult, presenting distinct effects on the neuronal transcriptome. Particularly, cat-sulf pretreatment appeared to boost counter-regulatory defense mechanisms (preconditioning). When MPP+ is applied, both LMWPM positively modulated glutathione metabolism and heat-shock response, as also favorably shifting the balance of pro/anti-apoptotic proteins.

Conclusions: Our findings point to the potential of LMWPM to trigger molecular mechanisms that help dopaminergic neurons to cope with a subsequent toxic insult. They are promising molecules to be further explored in the context of preventing and attenuating parkinsonian neurodegeneration.

Keywords: dopaminergic neurons; gene expression; neurodegeneration; preconditioning; transcriptomics.

PubMed Disclaimer